

MATHEMATICS STANDARD LEVEL PAPER 1

Wednesday 5 May 2010 (afternoon)

1	hour	30	minutes
	HOGH	90	IIIIIIIIIIII

C	Candidate session number										
0											

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 6]

Let f(x) = p(x-q)(x-r). Part of the graph of f is shown below.

The graph passes through the points (-2, 0), (0, -4) and (4, 0).

(a)	Write down the value of q and of r .	[2 marks]
(b)	Write down the equation of the axis of symmetry.	[1 mark]
(c)	Find the value of p .	[3 marks]

2. [Maximum mark: 8]

Let
$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ -2 \\ 3 \end{pmatrix}$$
 and $\overrightarrow{AC} = \begin{pmatrix} -2 \\ -3 \\ 2 \end{pmatrix}$.

Find a unit vector in the direction of \overrightarrow{AB} .

(a)	Find \overrightarrow{BC} .	[2 marks]

	,			
	\rightarrow	\rightarrow		
(c)	Show that AB is perpendicular to	AC.	[3 n	narks]

		 							 		 	
		 							 						 												. <u>.</u>		 	
		 							 						 												. <u>-</u>		 	

[3 marks]

3. [Maximum mark: 5]

Let $\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & 4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} -5 \\ 5 \end{pmatrix}$.

(a) Find **AB**. [3 marks]

(b) Solve $\mathbf{A}^{-1}\mathbf{X} = \mathbf{B}$. [2 marks]

.....

.....

......

.....

.....

4.	[Maximum	mark:	71

Let $f(x) = \cos 2x$ and $g(x) = 2x^2 - 1$.

- (a) Find $f\left(\frac{\pi}{2}\right)$. [2 marks]
- (b) Find $(g \circ f) \left(\frac{\pi}{2}\right)$. [2 marks]
- (c) Given that $(g \circ f)(x)$ can be written as $\cos(kx)$, find the value of $k, k \in \mathbb{Z}$. [3 marks]

.....

.....

.....

5. [Maximum mark: 6]

Let $f(x) = kx^4$. The point P(1, k) lies on the curve of f. At P, the normal to the curve is parallel to $y = -\frac{1}{8}x$. Find the value of k.

6.	[Maximum	mark:	7

Solve $\log_2 x + \log_2 (x - 2) = 3$, for x > 2.

7. [Maximum mark: 6]

A function f is defined for $-4 \le x \le 3$. The graph of f is given below.

The graph has a local maximum when x = 0, and local minima when x = -3, x = 2.

(a) Write down the x-intercepts of the graph of the **derivative** function, f'. [2 marks]

(b) Write down all values of x for which f'(x) is positive. [2 marks]

(c) At point D on the graph of f, the x-coordinate is -0.5. Explain why f''(x) < 0 at D. [2 marks]

Do NOT write on this page.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 14]

Consider the function f with second derivative f''(x) = 3x - 1. The graph of f has a minimum point at A(2,4) and a maximum point at $B\left(-\frac{4}{3}, \frac{358}{27}\right)$.

(a) Use the second derivative to justify that B is a maximum.

[3 marks]

(b) Given that $f'(x) = \frac{3}{2}x^2 - x + p$, show that p = -4.

[4 marks]

(c) Find f(x).

[7 marks]

Do **NOT** write on this page.

9. [Maximum mark: 14]

José travels to school on a bus. On any day, the probability that José will miss the bus is $\frac{1}{3}$. If he misses his bus, the probability that he will be late for school is $\frac{7}{8}$. If he does not miss his bus, the probability that he will be late is $\frac{3}{8}$. Let E be the event "he misses his bus" and F the event "he is late for school".

The information above is shown on the following tree diagram.

- (a) Find
 - (i) $P(E \cap F)$;
 - (ii) P(F). [4 marks]
- (b) Find the probability that
 - (i) José misses his bus and is not late for school;
 - (ii) José missed his bus, given that he is late for school.

[5 marks]

The cost for each day that José catches the bus is 3 euros. José goes to school on Monday and Tuesday.

(c) **Copy** and complete the probability distribution table.

[3 marks]

X (cost in euros)	0	3	6
P(X)	$\frac{1}{9}$		

(d) Find the expected cost for José for both days.

[2 marks]

10. [Maximum mark: 17]

Let $f(x) = 6 + 6\sin x$. Part of the graph of f is shown below.

-11-

The shaded region is enclosed by the curve of f, the x-axis, and the y-axis.

(a) Solve for $0 \le x < 2\pi$

(i) $6 + 6 \sin x = 6$;

(ii) $6 + 6\sin x = 0$. [5 marks]

(b) Write down the exact value of the x-intercept of f, for $0 \le x < 2\pi$. [1 mark]

(c) The area of the shaded region is k. Find the value of k, giving your answer in terms of π . [6 marks]

Let $g(x) = 6 + 6\sin\left(x - \frac{\pi}{2}\right)$. The graph of f is transformed to the graph of g.

(d) Give a full geometric description of this transformation. [2 marks]

(e) Given that $\int_{p}^{p+\frac{3\pi}{2}} g(x) dx = k$ and $0 \le p < 2\pi$, write down the two values of p. [3 marks]